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RESEARCH ARTICLE

Using Multi-spectral Satellite Data for Mapping
Bathymetry of Bitter Lakes, Suez Canal

Asmaa H. Mohammed a, Sarah S. Abdel-Hamid b, Hozaifa S. Ibrahim b,
Esraa E. AbouElmaaty c,*

a Marine Sciences Department, National Authority for Remote Sensing and Space Sciences (NARSS), Egypt
b Marine Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
c National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt

Abstract

The Suez Canal runs through an important water body, the Bitter Lakes which are deepened regularly to suit passing
by or parking vessels of different drafts. The bottom topographic is dynamically changing due to sedimentation by ships
and water current movements that are usually impacting and requiring those continuing dredging processes performed
by the Suez Canal Authority. Basically, studying the bottom dwellers of any lake requires bathymetric data which is very
costly. Therefore, bathymetry maps can be derived from passive optical satellite sensors (multispectral). The present
study used Landsat-8 and Sentinel-2 satellite imagery to produce water depth of the Bitter Lakes, Suez Canal. The
satellite image data was preprocessed then using log ratio to extract the raster values which were integrated with in situ
measured depth data to estimate absolute water depths. The Landsat-8 resulted in depth was supportive to detect bottom
topographic, using two different datasets, one by using coastal, green, and red bands with R squared of 0.89 and the
other dataset by using blue, green, and red bands with R squared of 0.84. Comparing with the Sentinel-2 resulted in
depth revealed R squared of 0.81 by using a dataset of blue, green, and red bands for pixel size 10 m. The study could be
used for further monitoring of lake bathymetry in a continuous way and detecting sedimentation dynamics.

Keywords: Bitter lakes, Bottom topography, Multispectral imagery, The Suez canal

1. Introduction

T he Bitter lakes represent the biggest water
volume of the Suez Canal. They are divided

into Great and Little Bitter Lakes that are connected
to each other, occupying an elongated and shallow
basin. They have a significant socio-economic value
achieved through various activities along its shore-
line i.e. tourism villages, fishing landing sites, agri-
cultural lands and the power plants (Abu-Sultan
power plant). Fishing activity in the Great Bitter
Lake depends mainly on three landing sites; El-
Deversoir, Faied, and Fanara. Despite the high di-
versity of fishes and invertebrates in the lakes, the
available studies have only focused on commercial

fishes and different fishing techniques usually used
around the lake (Mohammed, 2009). Hence, there is
no available data describing the biodiversity in the
Bitter Lakes.
The subsurface sediment of the shallow parts

bordering the lakes is mainly loose and composed of
sand and mud (Stanley et al., 1982). However, the
central part of the Great Lake is characterized by the
presence of evaporites; Halite and Gypsum, with
subsequent clastic admixtures (El-Masry, 1992). The
bitter lakes form a natural salinity barrier along with
the Suez Canal (Por, 1978). According to the his-
torical data, the salinity of the Bitter Lakes varied
from 62 % in 1869 (Sears and Merriman, 1980) to
41 % in 2009 (Mohammed, 2009). This gradual
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decrease of bottom salts (evaporites) is attributed to
the sedimentation deposits and deepening process
of the Suez Canal allowing the lessepsian migration;
which is the transport of different aquatic species
from various taxonomic groups from the Red Sea to
the Mediterranean Sea and vice versa since the Suez
Canal was opened in 1869 (Por, 1971). The bottom of
the Bitter Lakes is covered by seagrasses beds and
seaweeds. Seagrasses usually occur in mud or fine
silty bottoms. El-Manawy (1992) has reported a total
of 97 species of green, brown, and red algae, where
they mostly thrive in shallow waters. This distribu-
tion is probably due to the increased turbidity in
greater depths prohibiting sun light and thus proper
algal growth.
The bathymetry maps, which determine the

topography of the seafloor are considered a key tool
in various marine studies. As it provides basic data
used in different approaches; hydrology, fisheries
assessment, habitat mapping, seafloor profile and
sedimentation, in addition to, generating navigation
charts (Mohammed, 2018). Moreover, they are used
to monitor the movement of sediments to produce
the hydrographic charts for safe navigation (Botha
et al., 2016). The bathymetry mapping used to be
measured by acoustic instruments only, which faced
several difficulties in shallow waters as it is limited
to where vessel can navigate, moreover, it is time
and money consuming (Hernandez and Armstrong,
2016).
Remote sensing can be considered as one of the

most promising tools to map ocean basins, because
of its wide coverage related to the area. Active
sensors like airborne laser bathymetric and light
detection and ranging (Lidar) can effectively deter-
mine the depth of shallow and clear water, but it is
considerably expensive (Goodman et al., 2013;
Knudby et al., 2014; Leiper et al., 2014). On the other
hand, data obtained from passive optical satellite
sensors (multispectral and hyperspectral) provide
applied means for regularly mapping and moni-
toring bathymetry (Lyzenga, 1978; Brando and
Dekker, 2003; Jagalingam et al., 2015).
Through the past decade, many remote-sensing

platforms have produced bathymetry maps using
satellite sensors of moderate spatial resolution.
There are remote sensing satellites that offer imag-
eries with high spatial and spectral resolution;
however, they are not affordable. While, Landsat-8
imagery (spatial resolution of 30 m) are open source
(U.S. Geological Survey (USGS) website) accessible
for researchers which have employed the data in
various applications. In addition, its temporal reso-
lution is vital in monitoring environmental
studies. Furthermore, they are also used to retrieve

information about coastal environments; coastal
optical water properties; benthic habitat composi-
tion; bathymetry and sedimentations (Botha et al.,
2013; Jupiter et al., 2013).
Many methods and different algorithms were

used to retrieve water depth from remote sensing
data (Gholamalifard et al., 2013; Zoffoli et al., 2014).
The first used algorithms were the simplest and
easiest to apply as a band ratio (Lyzenga, 1978;
Stumpf et al., 2003; Mishra et al., 2007). Type of
bottom cover is known to affect the reflected image;
for instance, dense sea grass beds could give the
impression of deeper waters while sandy bottoms
reflect the right depth under suitable atmospheric
conditions (Stumpf et al., 2003). To avoid this am-
biguity, the used method depends on Philpot (1989),
who mentioned that the difference in depths can
give more prominent result than the bottom itself.
The present study discusses the ability of ba-

thymetry mapping for Bitter Lakes using remote
sensing techniques depending on the integration
between different datasets. As, there is no available
data for the bathymetry of the Bitter Lakes, the
present study aims to establish bathymetric map as
a base map for future environmental studies. In
addition, the study differentiates between both
Landsat-8 and Sentinel-2 satellites for most accurate
bathymetry mapping of small waterbodies.

2. Materials and methods

2.1. Study area

The Bitter Lakes are located between 99.870 km at
El-Deversoir and 130.580 km at Gineifa according to
the kilometric scale of the Suez Canal and covers an
area of about 232 km2. The study area is bounded by
latitudes 30�: 100 - 30�: 260 N, and longitudes 32�: 100 -
32�: 400 E. The Bitter Lakes are signified as Great
Bitter Lakes and Little Bitter Lakes connected to
each other as shown in (Fig. 1). All Great Bitter
Lakes and half of Little Bitter Lakes belong to
Ismailia governorate whereas, the other half of the
Little Bitter Lakes belong to the Suez governorate.

2.2. Data collection

The present study depends on the integration
between different datasets (Fig. 2); field depth
measurements, navigational maps and two types of
satellite imagery.

(1) A visual survey was carried out for the western
part of the great bitter lake's bottom to recognize
the benthic habitat distribution. The acquisition
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of depth points was determined in March, 2021
using single beam echo-sounder instrument.

(2) The depths of passageway and ships waiting
areas were collected using navigational map of
Suez Canal (United Kingdom survey, bathy-
metric map, 1999).

(3) Landsat-8 satellite imagery with pixel resolution
of 30 m was acquired on the 3rd of April 2021.

(4) Sentinel-2 imagery with pixel resolution of 10 m,
acquired on the third of April 2021

2.2.1. Landsat-8 satellite image
Landsat-8 was launched in 2013, and it has an

Operational Land Imager (OLI) provides high
quality multispectral images at the resolution of
30 m (15 m for panchromatic) and a revisiting time
of 16 days. This satellite is providing data continu-
ously to the Landsat Earth observation program,
which started in the 1970s. The Landsat-8 OLI is
collecting data using nine spectral bands in different
wavelengths. These wavelengths are visible, near-
infrared, shortwave in eight spectral bands, and
TIRS bands 10e11 which collected at 100 m but
resampled to 30 m. The raw data for the study area

was free-downloaded from USGS online site (URL:
earthexplorer.usgs.gov).

2.2.2. Sentinel-2 satellite image
The Sentinel-2 mission was equipped with iden-

tical Multispectral Instruments (MSI) capable of
acquiring data in 13 bands: 4 visible bands, 6 Near-
Infrared bands, and 3 Short-Wave Infrared bands.
The spatial resolutions of bands are different be-
tween 10 m, 20 and 60 m. The revisiting time is 10
days at the equator with 1 satellite, and 5 days with 2
satellites (S2A and S2B). The data of the study area
was free-downloaded from USGS online site (URL:
scihub.copernicus.eu). However, the Level-1C
product provides ortho-rectified top of atmosphere
reflectance with a sub-pixel multi-spectral and
multi-date registration. The satellite image used
(S2A) four bands (blue, green, red, and Near-
infrared (NIR)) of pixel size 10 m was used.

2.3. Data processing

Flow chart show the framework of processing
methods at (Fig. 3).

Fig. 1. Location map of Bitter Lakes.

A.H. Mohammed et al. / Blue Economy 1 (2023) 91e101 93

http://earthexplorer.usgs.gov
http://scihub.copernicus.eu


2.3.1. Geostatistical analyses
The measurements of in situ depth was analyzed

and modeled in framework of data transformation
to create continuous information raster of bathym-
etry. The dataset was interpolated with the values
extracted from navigational map to fill the gap of
center of the lake and generate a bathymetry map
(base map). Where, the model estimates raster
surface values for each pixel using the value and
distance of nearby points.

2.3.2. Remote sensed data analysis
The satellite image underwent preprocessing to

correct the atmospheric effects. This was achieved
using radiometric calibration and Fast Line-of-sight
Atmospheric Analysis of spectral Hypercubes

Fig. 2. Show the points in yellow color is in situ measured depth and the areas of blue is the depth readings taken from navigational map.

Fig. 3. Show the flow chart for methodology.
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(FLAASH) module, which is a developed module in
Envi-5 program for atmospheric correction.
The two dataset of band combination (blue, green,

red, and NIR) and (coastal, green, red, and NIR) was
used to generate relative depth raster. It was pro-
cessed using Ratio Transform Algorithm according
to (Stumpf et al., 2003):

Z¼m1
InðRwðliÞÞ
In
�
Rw

�
lj
���m0

Where Z is depth, m1 and m0 are the offset and gain
determined empirically, Rw is observed radiance of
bands, li refer to blue band and lj refers to green
band.
The calibration was done to the resulted relative

water depth raster to absolute depth using the
ground truth from base map values in a linear
regression. Linear regression is a simple method for
constructing predictive model when there are two
highly correlated variables (in situ data vs. satellite
data). Linear regression bathymetric model was
developed in its simplest form, a linear model
specifies the relationship between a dependent
(response) variable Y, and a predictor variable, X:

Y¼mXþ b ð1Þ

Where, b is the intercept and m is the Slope.

3. Results and discussion

3.1. Interpolation map

The visual survey of the benthic habitat showed
sandy bottom from the shoreline and muddy bot-
tom appeared towards the center of the lake. Sea-
grass beds and seaweeds were distributed in the

western part of the great bitter lakes (Fig. 4). Small
patches of rocky shoreline along the western part
were covered by seaweeds (Fig. 5). The turbidity
movement were represented in the center of the
lake by Satellite image (Fig. 6).
According to the compiled bathymetric map of the

interpolated depth datasets of in situ and naviga-
tional map (Fig. 7) it can be observed that; the lake
margins exhibit gentle slope from the shore line
towards the Suez Canal navigation channel. The
minimum recorded values of the shallow area
ranged from 0 to 0.85 m. And expectedly, the
maximum value was recorded at the navigation
channel (19 m).

3.2. Bathymetry map from satellite images

The relative depth after satellite imagery has
shown strong linear relationship with the in-situ

Fig. 4. Shows distribution of seagrasses beds with turbidity effect.

Fig. 5. Shows seaweeds cover on shallow shoreline.

Fig. 6. Satellite image (RGB (RED, GREEN, and BLUE, mixing color))
shows turbidity movements and distribution of seagrasses beds.
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depth (Figs. 8 and 9). The absolute depth calibration
showed linear correlation with R2 equal to 0.84 after
using dataset of (blue, green, red, and NIR bands).
Furthermore, the integrational datasets of ground

truth depth and satellite data results in a depth
range value of 0e14 m (Fig. 10). And recorded R2
equal to 0.89 by calibrated absolute depth for data-
set of (coastal, green, red and NIR bands) as shown

Fig. 7. Bathymetric map after interpolated data of in situ and navigational map.

Fig. 8. Show chart of linear regression using Landsat-8 (blue band).
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on (Fig. 11) with depth range from 0 to 13 m. The
Sentinel-2 relative depth (Figs. 12 and 13) revealed
from using dataset of (blue, green, red, and NIR
bands) in addition to advantage of a pixel size of
10 m, confirm R squared with 0.81.
The present study revealed that this method is

promising for detecting depth on clear water, where
bathymetry algorithm was much more sensitive to

changes in bottom depth than bottom composition
(Dierssen et al., 2003). While in comparison, Land-
sat-8 was more accurate and sensitive to shallow
areas than Sentinel-2 that, despite its high resolu-
tion, it did not show depths lower than 2 m (Fig. 13),
probably due to the lacking a coastal band, which is
a drawback that was mentioned in a previous study
(Mohammed, 2018). On the other hand, Landsat-8

Fig. 9. Show chart of linear regression using Landsat-8 (coastal band).

Fig. 10. Bathymetric map after integrated Landsat-8 satellite image with depth datasets using blue band.
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images have shown more sensible variation of
depths starting from 0 m depth as predictable and
known on ground.
So according to Landsat-8 (Figs. 9 and 11); the lake

bathymetry could be classified into three zones; the
shallow water, the waiting areas for ships and the
two ways of navigation channel. The first zone starts
from the shoreline (0 m) to depths reach up to 2 m in

the western and eastern parts of the lake. This
shallow water is important for juvenile fishes, acting
as shelter and feeding areas (Ahmed et al., 2004;
Mohammed, 2009; Ahmed and El-karamany, 2013).
It is also suitable for tourism activities extending
along the western bank of the lakes. The second
zone which is the waiting areas for ships, has ba-
thymetry ranges from 13 m to 14 m. This area

Fig. 11. Bathymetric map after integrated Landsat-8 satellite image with depth datasets using Coastal band.

Fig. 12. Show chart of linear regression using Sentinel-2 (blue band).
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undergoes deepening processes on regular basis to
compensate with the draft of passing ships. As a
result, this area has increased turbidity levels. The
last zone which represents the two ways of naviga-
tion channel has a depth that varies between 18 m at
El-Deversoir; 15.5 m at the lake center and 15 m at
the connection between Great and Little Bitter
Lakes.
Comparing the interpolated map of depth mea-

surements and satellite extracted depth data; it was
observed that the shallow areas in both eastern and
western sides were nearly identical. However, the
center of the lake varied on the satellite estimated
maps according to (Liu et al., 2021; Duan et al., 2022)
when the depth was deeper than 15 m, the ba-
thymetry error increased. In addition to the
turbidity related to the water movement, that clearly
appeared on satellite imagery in agreement with
(Kouadio et al., 2020).
The integration between in situ depth data with

satellite image resulted in a map that presented the
real status of the lake which enable a realistic
monitoring of turbidity movements and sediments
settling. In agree with Wu et al. (2021) the estab-
lished method with different datasets appropriate
for monitoring dredging activities, especially in
areas with polluted water mud sedimentation.
Furthermore, the satellite data categorized the

bathymetry and the bottom cover through spectral
reflectance related to benthic type of sand and sea-
grasses. The reason of the seagrass appearance in
the imagery is that the green reflectance (555 nm) is
not highly absorbed by most of the benthic vegeta-
tion, this was mentioned by Dekker et al. (2011) and
Mustafa et al. (2019).
Therefore, it was valuable to detect the turbidity

movement and seagrasses beds distribution after
water column correction (Dekker et al., 2005; Dier-
ssen et al., 2003). However, the satellite image
derived false bathymetry due to water turbidity
using linear regression in this study. On the other
hand, Wei and Theuerkauf (2021) estimated high
accuracy bathymetry to turbid water on using
polynomial regression.
Environmental studies, giving indications on

benthic biota distributed on the sea floor at different
depths. Furthermore, since sedimentation is a major
contributing factor that affects submerged marine
plants, its crucial to figure out its rates both spatially
and temporally.

4. Conclusion

Ecologically, the Bitter Lakes have a deficiency on
bathymetric data. The main product from this study
is a novel bathymetry map from remote sensed data,

Fig. 13. Bathymetric map after integrated satellite image with depth datasets using Sentinel-2 blue band.
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as well as, a functional description of different depth
zones of the lake from very shallow to deep water at
passage way. In addition to, water column status
that was resulted from an integration between sat-
ellite images and field data, which is useful for
studying biological aspects of bottom dwellers dis-
tribution. The remote sensing data was capable to
identify the real state of the Bitter lakes including
the dynamics of sedimentations movements and
benthic biota distribution. We can confirm that,
using satellite data to map benthic habitats espe-
cially seaweed and seagrass beds is more informa-
tive when eliminating the effect of turbidity. Finally,
in waterbodies such as ponds and lakes, recom-
mend using Landsat-8 satellite data in detecting the
bathymetry of narrow shorelines especially using
coastal band.
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